Abstract

Platelet-derived growth factor (PDGF) isoforms and PDGF receptor-alpha are upregulated in fibroproliferative lesions in response to asbestos exposure. To examine the functional role of PDGF in asbestos-induced lung disease, we have evaluated the impact of PDGF-B overexpression in the lung on the development of pulmonary fibrosis induced by asbestos inhalation. Transgenic mice expressing PDGF-B from the surfactant protein C promoter and wild-type C57BL/6 mice were exposed to aerosolized chrysotile asbestos fibers via three different exposure regimens: 3 consecutive days to 9 mg/m(3), once a week for 5 weeks to 12 mg/m(3), or once a week for 8 weeks to 11 mg/m(3). The 3-day exposure did not produce fibroproliferative lesions in SPC-PDGFB or wild-type mice, indicating that PDGF expression did not increase susceptibility to a subthreshold dose of asbestos. Transgenic and wild-type mice subjected to the 5-week exposure protocol exhibited similar fibrogenic lesions histologically 48 hours and 8 weeks postexposure, but lungs from transgenic mice had elevated lung hydroxyproline content 8 weeks postexposure relative to wild-type mice. In addition, SPC-PDGFB transgenic mice developed pronounced thickening of arterioles following the 5-week exposure regimen. Mice exposed to asbestos for 8 weeks and examined 10 months later showed pronounced, diffuse fibrotic lesions of terminal bronchioles and alveolar ducts, but no histological differences between transgenic and nontransgenic mice were observed. These results indicated that PDGF-B overexpression can stimulate increased collagen deposition and vascular smooth muscle hyperplasia following asbestos inhalation and that a limited exposure (8 times) to chrysotile aerosol can produce long-lasting fibrotic lesions. The 8-week exposure regimen provides an animal model that encompasses an important aspect of human asbestosis-i.e., persistence of fibrosis for long periods after cessation of asbestos exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.