Abstract

This paper examines the problem of identifying cracks in planetary gear systems through the use of vibration sensors on the stationary gearbox housing. In particular, the effect of unequal spacing of planet gears relative to the rotating carrier plate on various frequency components in the vibration spectra is studied. The mathematical analysis is validated with experimental data comparing the vibration signature of helicopter transmissions operating either normally or with damage, leading to shifts in the planet gear positions. The theory presented is able to explain certain features and trends in the measured vibration signals of healthy and faulty transmissions. The characterization offered may serve as a means of detecting damage in planetary gear systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.