Abstract

Physical stimulation plays a crucial role in the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs). However, the mechanotransductive mechanisms remain uncleared. Recent studies have suggested that the Piezo1 channel is essential for transforming mechanical signals. Therefore, we investigate the Piezo1-mediated mechanisms in mechanical strain-regulated MSC osteogenic differentiation and release of proinflammatory cytokines. The tensile strain was applied to rat MSCs cultured in a monolayer to induce mechanical strain. The immuno-nanomagnetic bead enzyme-linked immunosorbent assay was employed to assess gene and protein expressions, as well as osteogenic biomarkers and interleukin-6 (IL-6) release, both in the presence or absence of a Piezo1 agonist/antagonist. Firstly, biophysical loading through mechanical strain was found to promote MSC osteogenic differentiation. Suppression of Piezo1 using GsMTx4 antagonist or transfection with Piezo1-siRNA effectively inhibited mechanical responses associated with osteogenic gene expressions and IL-6. Activation of Piezo1 by Yoda1 mimicked the effects induced by mechanical strain on osteogenic gene expressions and IL-6 release, which were associated with YAP activation, upregulation, and nuclear accumulation of β-catenin. In conclusion, these findings significantly enhance our understanding of MSC mechanotransduction and hold great promise for drug development to enhance skeletal mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.