Abstract

Investigations were made on the inhibitory effect of phorbol 12-myristate 13-acetate (PMA), a powerful activator on protein kinase C, on collagen-induced signal transduction in washed rabbit platelets. Upon activation of the platelets with a low-dose of collagen (5 μg/ml), which was suppressed by 10 μM indomethacin, pretreatment of the platelets with 2 nM PMA caused prolongation of lag phase (2 min) before the onsets of the aggregation and ATP secretion as compared with PMA-untreated platelets (30 sec). Under this condition, appearance of the cell responses including the phosphatidic acid formation, thromboxane (Tx) generation and Ca 2+-influx was similarly retarded for 2–3 min, whereas arachidonic acid liberation from the membrane phospholipids was not significantly affected by the PMA pretreatment. After such lag phase, every response appeared rapidly and reached almost the control value (without PMA). Upon activation of the same platelets with a high-dose of collagen (50 μg/ml), which was only half suppressible by indomethacin, PMA in the presence of indomethacin almost completely suppressed the phosphatidic acid formation as well as the aggregation and ATP secretion. Thus, our results suggest that collagen-platelet interaction may elicit direct activation of phospholipase A2 and C, and that the latter enzyme activation may be regulated by a negative effect of protein kinase C. However, the phospholipase A2 activation may be regulated by a mechanism independent of such effect. In PMA-pretreated platelets in response to a low-dose of collagen, the prolonged lag phase for aggregation appears to be due to impaired conversion of liberated arachidonic acid to TxA 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.