Abstract

The effect of pH on MnO(x)/GAC heterogeneous catalytic ozonation was investigated. Nitrobenzene was used as a model refractory organic pollutant. It was found that in MnO(x)/GAC catalytic ozonation, the degradation efficiency of nitrobenzene was higher under low pH conditions (pH 2.74-3.52) than that under high pH conditions (pH 6.72-9.61). This result was different from the case of ozonation alone, in which higher pH had positive effect on the degradation of nitrobenzene due to the formation of hydroxyl radical. In the presence of MnO(x)/GAC catalyst, ozone decomposition was accelerated, and higher pH condition favored ozone decomposition. It was assumed that hydroxyl radicals might not be the dominating active species in the catalytic oxidation, for the presence of t-butanol did not have any influence on MnO(x)/GAC heterogeneous catalytic ozonation. Adsorption of organic micropollutants on MnO(x)/GAC catalyst was an important step and would have direct influence on the effectiveness of catalytic oxidation. It was assumed that the organic pollutants might be further decomposed on the surface of catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.