Abstract

Addition of ATP to anaerobic, succinate-reduced phosphorylating submitochondrial particles (ATP-Mg particles) causes reduction of cytochromes b absorbing at 558 and 566 nm in the pH range 5.5–9.0. The extent of the reduction of both cytochromes induced by ATP is maximal at pH 7.4–7.5. On the other hand, addition of ATP to anaerobic, NADH-reduced particles causes oxidation of b 562 at high pH, while it causes reduction of cytochromes absorbing at 558 and 566 nm at low pH. The optimal pH for the oxidation of cytochromes b is in the region 8.5–9.0. Partial reduction of the cytochromes absorbing at 558 and 566 nm can be brought about non-energetically by lowering the potential of the substrate redox couple or by making the reaction mixture alkaline. Addition of the electron-transfer mediator, phenazine methosulphate, to anaerobic, NADH-reduced particles causes complete reduction of cytochromes b absorbing at 558 and 566 nm in the pH range 5.5–9.0. The findings are interpreted in terms of a pH-induced removal of an accessibility barrier (structural or kinetic) that interferes with the redox equilibrium between NADH and cytochrome b.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.