Abstract

The surface activity and aggregation behavior of two synthesized boronic acid based anionic surfactants, sodium salt of 2-dodecyl pyridine-5-boronic acid (SDDPB) and sodium salt of 2-oxydodecyl pyridine-5-boronic acid (SODDPB), were studied in buffer solution at pH 9 and 13 containing carbohydrates. The self-assembly formation was investigated by use of a number of techniques including surface tension, conductivity, fluorescence spectroscopy, dynamic light scattering, X-ray diffraction, and transmission electron microscopy (TEM). Both of the amphiphiles exhibit a single break in the surface tension vs log(concentration) plots, indicating existence of one critical aggregation concentration. Steady state fluorescence spectroscopy was used to determine the polarity indexes using pyrene and the rigidity of the microenvironments of the aggregates using 1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescence probe molecules. The pKa's of both amphiphiles were determined in buffer solutions of different pH's. XRD studies were performed to shed light on the morphology of the self-assemblies. TEM micrographs revealed the existence of vesicles for both the amphiphiles in buffer solution of pH 9, but at pH 13, TEM pictures indicate the existence of closed vesicles in SDDPB solution and at concentrated solution the vesicles are fused to form sponge-like micelles. After aging the vesicular solution of pH 13 of SDDPB, the closed vesicles are destroyed. In contrast, for SODDPB at pH 13, TEM pictures suggest the existence of spherical and complex micelles in solution which were further transformed into crystal-like structure upon aging. The average hydrodynamic radii were determined by dynamic light scattering measurement. Therefore, for the first time, we have successfully synthesized two new surfactants containing pyridyl-boronic acid as a headgroup which shows remarkable tuning of morphology in two different pH's and in the presence of two different carbohydrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.