Abstract

Container aquatic habitats support a specialized community of macroinvertebrates (e.g. mosquitoes) that feed on microbial communities associated with decaying organic matter. These aquatic habitats are often embedded within and around agricultural lands and are frequently exposed to pesticides. We used a microcosm approach to examine the single and combined effects of two herbicides (atrazine, glyphosate), and three insecticides (malathion, carbaryl, permethrin) on microbial communities of container aquatic habitats. MiSeq sequencing of the V4 region of both bacterial and archaeal 16S rRNA gene was used to characterize the microbial communities of indoor microcosms that were either exposed to each pesticide alone, a mix of herbicides, a mix of insecticides, or a mix of all five insecticides. Individual insecticides but not herbicides reduced the microbial diversity and richness and two insecticides, carbaryl and permethrin, also altered the microbial community structure. A mixture of herbicides had no effect on microbial diversity or structure but a mixture of insecticides or all five pesticides reduced microbial diversity and altered the community structure. These findings suggest that exposure of aquatic ecosystems to individual pesticides or their mixtures can disrupt aquatic microbial communities and there is need to decipher how these changes affect resident macroinvertebrate communities.

Highlights

  • Container aquatic habitats, both natural and man-made harbor a specialized community of macroinvertebrates that is dominated by mosquitoes

  • Pesticides which are comprised of insecticides, herbicides, and fungicides are a group of potentially toxic substances that are capable of disrupting the microbial structure and function in aquatic habitats

  • The relative abundance of Alphaproteobacteria was much lower in carbaryl, PMC, and AGPMC treatments compared to the other treatments while that of Betaproteobacteria was much higher in carbaryl, PMC, and AGPMC compared to the other treatments (Fig. 1)

Read more

Summary

Introduction

Both natural (phytotelmata) and man-made (e.g. storm water catch basins, discarded tires and tins) harbor a specialized community of macroinvertebrates that is dominated by mosquitoes. These aquatic ecosystems are detritus-based and derive most of their carbon inputs from allochthonous organic matter primarily leaf litter[1,2]. Some microbes bacteria may utilize pesticides as a source of nutrients facilitating their growth and survival, while sensitive species may be impaired or decimated by pesticides[10,11] These ecological alterations may trigger a cascade of indirect effects. Aquatic ecosystems are typically exposed to a mixture of pesticides and understanding the response of microorganisms to these mixtures can improve our ability to predict the full impact of chemical disturbances on microbial processes and trophic interactions

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.