Abstract

In the present study, we investigated the effect of naturally occurring and synthetic peroxides on K+-depolarization-evoked release of [3H]D-aspartate from bovine isolated retinae. Furthermore, effect of peroxides on endogenous glutamate concentrations were measured by HPLC in bovine neural retinae and vitreous humor of eyes treated with hydrogen peroxide (H2O2) ex vivo. Both naturally occurring H2O2 (1-100 microM) and synthetic (cumene hydroperoxide, cuOOH; 1-100 microM) peroxides caused a concentration-dependent inhibition of K+-evoked [3H]D-aspartate release without affecting basal tritium efflux. The antioxidant, trolox (2 mM) prevented the inhibition of evoked [3H]D-aspartate overflow elicited by both H2O2 (30 microM) and cuOOH (10 microM). Inhibition of catalase by 3-amino-triazole (3- AT 100 mM) enhanced an inhibitory effect of a low concentration of H2O2 (1 microM) but antagonized the effect of H2O2 (30 microM) on K+-induced [3H]D-aspartate release. In ex vivo experiments, exogenously applied H2O2 (1-100 microM) also caused a concentration-related decrease in glutamate levels in the bovine retina. We conclude that peroxides can inhibit K+-evoked release of [3H]D-aspartate and also decrease endogenous glutamate concentrations in the bovine retina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.