Abstract

Responses of single units in the reticular and ventrolateral thalamic nuclei were studied in acute experiments on curarized cats before and after intravenous injection of small doses (0.5–15 mg/kg) of pentobarbital, with simultaneous derivation of activity by two electrodes. After injection of pentobarbital, unit activity in the reticular nucleus consisted of high-frequency grouped (52.5% of 40 neurons) or continuous (30%) discharges as long as barbiturate spindles were present in the electrocorticogram. Activity of only four neurons (10%) of this nucleus was inhibited during the presence of spindles. In all other neurons of the reticular nucleus (7.5%) the character of discharges was unchanged after injection of pentobarbital. The appearance of grouped discharges, repeated several times (66.5% of 40 neurons), or blocking of activity (30%) throughout the period of spindle recording was observed in neurons of the ventrolateral nucleus. The remaining neurons of that nucleus (3.5%) did not respond to intravenous pentobarbital. The appearance of high-frequency discharges in neurons of the reticular nucleus while spindles were recorded coincided with a period of silence in neurons of the ventrolateral nucleus (58.5% of 34 pairs of neurons). High-frequency electrical stimulation of the mesencephalic reticular formation led to asynchronous activation of neurons of the ventrolateral nucleus (82%) and inhibition of unit activity in the reticular nucleus (88%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.