Abstract

In this work, we present fabrication and studies of pure and Pd-decorated ZnO nanostructures on Ag-coated substrates in view of gas-sensing application. The sensor elements consist of a dense structure of ZnO nanobelts. The chemical composition of the surface and gas-sensing properties of pure and Pd-doped nanostructures were studied and compared. On the surface of the Pd-decorated ZnO samples, the presence was found of Pd and Pd-Ag clusters, as well as isolated Pd2+ ions were incorporated into the ZnO lattice. The Pd-ZnO sensor element showed a better response to CO, NH3, and acetone compared to the pure ZnO sample. The Pd-ZnO sample exhibited its highest response to exposure to acetone at room temperature. We associate the improvement of sensing performance of the Pd-decorated ZnO nanostructures with the increased number of adsorption centers on the surface due to the Pd nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.