Abstract

BackgroundThe yeast Kluyveromyces marxianus features specific traits that render it attractive for industrial applications. These include production of ethanol which, together with thermotolerance and the ability to grow with a high specific growth rate on a wide range of substrates, could make it an alternative to Saccharomyces cerevisiae as an ethanol producer. However, its ability to co-ferment C5 and C6 sugars under oxygen-limited conditions is far from being fully characterized.ResultsIn the present study, K. marxianus CBS712 strain was cultivated in defined medium with glucose and xylose as carbon source. Ethanol fermentation and sugar consumption of CBS712 were investigated under different oxygen supplies (1.75%, 11.00% and 20.95% of O2) and different temperatures (30°C and 41°C). By decreasing oxygen supply, independently from the temperature, both biomass production as well as sugar utilization rate were progressively reduced. In all the tested conditions xylose consumption followed glucose exhaustion. Therefore, xylose metabolism was mainly affected by oxygen depletion. Loss in cell viability cannot explain the decrease in sugar consumption rates, as demonstrated by single cell analyses, while cofactor imbalance is commonly considered as the main cause of impairment of the xylose reductase (KmXR) - xylitol dehydrogenase (KmXDH) pathway. Remarkably, when these enzyme activities were assayed in vitro, a significant decrease was observed together with oxygen depletion, not ascribed to reduced transcription of the corresponding genes.ConclusionsIn the present study both oxygen supply and temperature were shown to be key parameters affecting the fermentation capability of sugars in the K. marxianus CBS712 strain. In particular, a direct correlation was observed between the decreased efficiency to consume xylose with the reduced specific activity of the two main enzymes (KmXR and KmXDH) involved in its catabolism. These data suggest that, in addition to the impairment of the oxidoreductive pathway being determined by the cofactor imbalance, post-transcriptional and/or post-translational regulation of the pathway enzymes contributes to the efficiency of xylose catabolism in micro-aerobic conditions. Overall, the presented work provides novel information on the fermentation capability of the CBS712 strain that is currently considered as the reference strain of the genus K. marxianus.

Highlights

  • The yeast Kluyveromyces marxianus features specific traits that render it attractive for industrial applications

  • Growth and fermentation profiles of K. marxianus CBS712 at 30°C with different inlet oxygen concentrations on mixture of glucose and xylose The K. marxianus strain CBS712 was cultivated in batch mode in minimal defined medium [30] with xylose (20 g L−1) and glucose (20 g L−1) as carbon and energy source to evaluate the eventual sugar co-consumption, highly desirable for lignocellulosic second-generation ethanol production

  • The results presented provide data indicating that sugars fermentation in the K. marxianus CBS712 strain is affected both by oxygen supply and temperature

Read more

Summary

Introduction

The yeast Kluyveromyces marxianus features specific traits that render it attractive for industrial applications. These include production of ethanol which, together with thermotolerance and the ability to grow with a high specific growth rate on a wide range of substrates, could make it an alternative to Saccharomyces cerevisiae as an ethanol producer. Among the nonSaccharomyces or non-conventional yeasts with potential for industrial applications are those belonging to the genus Kluyveromyces. Within this genus Kluyveromyces marxianus, Kluyveromyces lactis, Kluyveromyces aestuarii, Kluyveromyces dobzhanskii and Kluyveromyces wickerhamii are highly related and appear clearly separated from the other Kluyveromyces species [4]. From 1980s onwards, its easiness to genetic manipulations was recognized, and subsequently, suitable genetic tools have been developed, rendering it an efficient host for recombinant production [7,9,10]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.