Abstract
In dry plasma silicon etching, it is desired to have a high etching rate, a high etching selectivity to mask material, a vertical or controllable sidewall profile, and a smooth sidewall. Since the standard Bosch process (switching between SF6 and C4F8 gases) leads to a wavy/rough sidewall profile, the nonswitching pseudo-Bosch process is developed to give a smooth sidewall needed for nanostructure fabrication. In the process, SF6 and C4F8 gases are introduced to the chamber simultaneously. Here, the authors show that by introducing a periodic oxygen (O2) plasma cleaning step, that is, switching between SF6/C4F8 etching and O2 cleaning, the silicon etching rate can be significantly improved (by up to ∼55%, from 139 to 216 nm/min) without any adverse effect. This is mainly because O2 plasma can remove the fluorocarbon polymer passivation layer at the surface. The etching and cleaning step durations were varied from 5 s to 40 min and from 0 to 60 s, respectively. The fastest etching rates were obtained when the cleaning step takes roughly 10% of the total etching time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.