Abstract

Flux Bounded Tungsten Inert Gas (FBTIG) welding is a modified TIG welding process in which increased depth of penetration (DoP) can be achieved by laying thin flux coatings on either side of the weld centerline. The effect of three single component fluxes viz., SiO2, TiO2 and Cr2O3 on bead geometry of autogenous melt runs in AISI 304L stainless steel for the gap between the flux layers varying from 2 to 7 mm, is studied. Results show that DoP can be improved significantly in FBTIG process using single component fluxes. Nature of the flux and the gap between the flux layers influence the weld bead geometry. Among the three fluxes used, SiO2 is more efficient in improving the DoP. Arc constriction is the predominant mechanism operative in improving the DoP in FBTIG welding. Possibility of change in solidification mode in FBTIG weld metals of stainless steels is highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.