Abstract

In this work, hydrothermal oxidation of electrodeposited zinc coatings is used to produce zinc oxide (ZnO) films. In the first step, zinc (Zn) coating is electrodeposited on indium tin oxide (ITO) coated glass substrate. The Zn films are then immersed in deionized water at [Formula: see text]C. The exposure time of Zn coating in deionized water is varied from 1[Formula: see text]h to 24[Formula: see text]h in sequence. At the 24[Formula: see text]h exposure time, X-ray diffraction (XRD) patterns reveal that zinc film has been completely converted to ZnO. Scanning electron microscope (SEM) results show morphological changes from flakes (for pure Zn) or 2D plates to rod (ZnO) like morphology which further changes to cotton-flower like shapes with an increase in oxidation time. Diffuse reflectance spectral measurements show the band gap tuning with oxidation time (it decreases from 3.28[Formula: see text]eV to 3.19[Formula: see text]eV). Photoluminescence (PL) spectra have depicted phonon replicas with energy separation of [Formula: see text][Formula: see text]meV for the ZnO films obtained after 6 and 12[Formula: see text]h exposure time in deionized water at [Formula: see text]C temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.