Abstract

Oxidation of isoprene by hydroxyl radical (OH), ozone (O3), or nitrate radical (NO3) leads to the formation of secondary organic aerosol (SOA) in the atmosphere. This SOA contributes to the radiation balance by scattering and absorbing solar radiation. In this study, the effect of oxidation processes on the wavelength-dependent complex refractive index (RI) of SOA generated from isoprene was examined. Oxidation conditions did not have a large effect on magnitude and wavelength dependence of the real part of the RI. In the case of SOA generated in the presence of sulfur dioxide (SO2), significant light absorption at short visible and ultraviolet wavelengths with the imaginary part of the RI, up to 0.011 at 375 nm, was observed during oxidation with OH. However, smaller and negligible values were observed during oxidation with O3 and NO3, respectively. Moreover, in the absence of SO2, light absorption was not observed regardless of the oxidation process. There was an empirical correlation between the imaginary part of the RI and the average degree of unsaturation of organic molecules. The results obtained herein demonstrate that oxidation processes should be considered for estimating the radiative effect of isoprene-derived SOA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.