Abstract

The influence of oscillatory shear deformation on spinodal decomposition (SD) processes in a blend of polybutadiene and polyisoprene has been investigated by in-situ observations of light scattering patterns. A large strain amplitude γ0 = 0.8, with angular frequencies ω = 0.63 and 6.3 rad/s, was imposed on the blend undergoing SD induced by a temperature jump from a homogeneous (or single phase) region to a thermodynamically unstable region. Comparing representative rates of the shear deformation (i.e., frequency ω and a maximum shear rate) with representative growth rates for SD (i.e., growth rate of concentration fluctuations in the early stage SD and that of domains in the later stage SD), the deformation used in the present study is expected to bring the system into a homogeneous state, based on an estimation in the simple shear flow case. In spite of this strong shearing criterion, SD still occurred at ω = 0.63 rad/s: the phase-separated structure is affinely deformed in harmony with the shear strai...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.