Abstract

In this study, a series of ZnAl layered double hydroxide (ZnAl-LDH) thin films were synthesized on an AA6082 alloy by a single-step hydrothermal process at different synthesis parameters, including reaction temperature, reaction time, pH, and the relation between the LDH structural variations, and the corresponding corrosion resistance properties are briefly reported. The as-prepared synthetic coatings were characterized by scanning electron microscopy and X-ray diffraction. The corresponding corrosion properties were evaluated through potentiodynamic polarization curves and through electrochemical impedance spectra. The findings demonstrated that synthesis parameter variations impart an influential effect on the geometry of LDH, film thickness, and structural morphologies which have a significant impact on LDH corrosion resistance properties. The ZnAl-LDH corrosion resistance was found to increase with respect to extended high temperature and aging time, while the synthetic pH conditions also promoted LDH growth and film thickness, relative to lower-pH reaction conditions. The optimization results are attributed to high ZnAl-LDH corrosion resistance and act as a strong barrier film and ion-exchange surface area. The ZnAl-LDH films at 80°C-18r-6.5pH have shown much lower corrosion current density compared to bare AA6082, and a decrease of up to five orders of magnitude is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.