Abstract
The effects of increased photosynthetic active radiation (PAR), UV radiation (UVR), and nutrient supply on photosynthetic activity, pigment content, C:N ratio and biomass yield were studied in tank cultivated Gracilaria conferta (Rhodophyta). Electron transport rate (ETR) and biliprotein content were higher under high nutrient supply (HNS), obtained from fishpond effluents, compared to low nutrient supply (LNS), in contrast to mycosporine-like amino acids (MAAs) dynamic. The high MAA content in LNS-algae could be explained by higher UVR penetration in the thallus and by the competition for the use of nutrients with other processes. Effective quantum yield decreased after short-term exposure to high irradiance whereas full recovery in shade was produced only under slightly heat shock. UVA radiation provoked an additional decrease in photosynthesis under high water temperature. UVB radiation reversed UVA’s negative effect mainly with HNS. Results support that nutrient-sufficiency help G. conferta to resist environmental changes as short-term temperature increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.