Abstract

In this paper, different strategies to promote PLA crystallization were investigated with the objective of increasing the crystalline content under typical polymer processing conditions. The effect of heterogeneous nucleation was assessed by adding talc, sodium stearate and calcium lactate as potential nucleating agents. The PLA chain mobility was increased by adding up to 10wt% acetyl triethyl citrate and polyethylene glycol as plasticizers. The crystallization kinetics were studied using DSC analysis under both isothermal and non-isothermal conditions. The isothermal data showed that talc is highly effective in nucleating the PLA in the 80–120°C temperature range. In the non-isothermal DSC experiments, the crystallinity developed upon cooling was systematically studied at cooling rates of 10, 20, 40, and 80°C/min. The non-isothermal data showed that the combination of nucleant and plasticizer is necessary to develop significant crystallinity at high cooling rates. The nucleated and/or plasticized PLA samples were injection molded and the effect of mold temperature on crystallinity was determined. It was possible to mold the PLA formulations using mold temperatures either below 40°C or greater than 60°C. At low temperature, the molded parts were nearly amorphous while at high mold temperatures, the PLA formulation with proper nucleation and plasticization was shown to achieve crystallinity levels up to 40%, close to the maximum crystalline content of the material. Tensile mechanical properties and temperature resistance of these amorphous and semi-crystalline materials were examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.