Abstract

Critical shear stress under the superimposed hydrostatic and uniaxial normal stress conditions of C, Si, Ge, and SiC is evaluated by ab initio density functional theory calculations to investigate the response of ideal shear strength (ISS) to superimposed normal stresses in covalent crystals. We find a substantial difference in the responses of ISS to normal stress among the covalent crystals examined; e.g., hydrostatic compression increases the ISS of C but decreases that of Si, Ge, and SiC. The ISS is mostly a highly nonlinear and anisotropic function of normal stress. The results thus indicate that normal stresses can significantly affect the critical shear stress, which is crucial to interpreting experimental observations of crystal deformation, e.g., dislocation nucleation in nanoindentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.