Abstract

In this paper, we report on the influence of nitrogen concentration in metal melts on the growth processes, morphology, and defect-and-impurity structure of diamond crystals. In two series of experiments, the concentration of nitrogen in the growth system was varied by adding Fe3N and CaCN2 to the charge; the other parameters and conditions of the growth were constant: FeNiC system, P = 5.5 GPa, T = 1400 °C, and duration of 65 h. It has been found that, with increasing nitrogen concentration (CN) in the metal melt from 0.005 to 0.6 atom %, the growth of single crystal diamond is followed by formation of aggregates of block twinned crystals and then by crystallization of metastable graphite. At the stage of single crystal growth, an increase in CN results in an increase in nitrogen impurity concentration in diamond crystals from about 200 ppm to approximately 1100 ppm, an increase in density of dislocations, twin lamellae, and internal strains, and a change in crystal morphology. Further increases in CN result in formation of aggregates of block crystals with nitrogen concentration around 120−300 ppm. At nitrogen concentration in the melt higher than a certain critical value, nucleation and growth of diamond are terminated and graphite crystallizes in the diamond stability field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.