Abstract

We investigated the effect of adding nickel(II) sulfide (NiS) on nitridation of alumina (Al2O3) to aluminum nitride (AlN) using polymeric carbon nitride (PCN), which was synthesized by polymerization of dicyandiamide at 500°C. The product powders obtained from nitridation of a mixture of δ-Al2O3 and NiS powders (mole ratio of 1:0.01) at various reaction temperatures were characterized by powder X-ray diffraction, 27Al magic-angle spinning nuclear magnetic resonance, and Raman spectroscopy. δ-Al2O3 began to convert to AlN at 900°C and completely converted to AlN at 1300°C. The as-synthesized sample powders contained nitrogen-doped carbon microtubes (N-doped CMTs) with a length of several tens of mm and thickness of ca. 3µm. The addition of NiS to δ-Al2O3 resulted in the enhancement of the amount of N-doped CMTs and nitridation rate, which might be due to the catalytic action of Ni particles on the thermal decomposition of vaporized PCN. The change in Raman spectra with reaction temperatures indicated that the crystallinity of N-doped CMTs was increased by calcining at higher reaction temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.