Abstract
The effect of neutron irradiation on the tensile deformation behavior of zirconium was examined at room temperature at various strain rates ranging of 2.2×10−4~2.2× 10−2 sec−1. The microstructure of the deformed specimens was observed by transmission electron microscopy. It was established that neutron irradiation diminishes the uniform elongation and the strain hardening rate, and hastens the onset of plastic instability. These phenomena are attributed to inhomogeneous deformation in the dislocation channels in the irradiated and deformed zirconium. From the relation between strain rate and tensile properties (yield stress, ultimate tensile stress, uniform elongation and strain hardening rate), it was established that in unirradiated zirconium deformation is controlled by slip at strain rates below 6×10−3 sec−1, while above this threshold, twinning as well as slip contribute to deformation. Neutron irradiation markedly inhibits deformation twinning in zirconium at room temperature. At 77 K, on the other hand, deformation by twinning is more prominent in irradiated specimens. The mechanism of twinning inhibition due to neutron irradiation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.