Abstract
The effects of sensory nerve stimulation (topical neutral formaldehyde, 1%) and intracameral injection of calcitonin gene-related peptide (CGRP) on regional ocular blood flow, intraocular pressure (IOP), the blood-aqueous barrier, pupil size, and blood pressure were studied in the rabbit. Sensory nerve stimulation elicited a typical irritative response in the rabbit eye, with vasodilation in the ciliary body (from 128 +/- 31 to 363 +/- 105 mg/min, p less than 0.05) accompanied with a breakdown of the blood-aqueous barrier, rise in the IOP, and miosis. CGRP caused similar, but not identical, changes in the eye: vasodilation in the ciliary body (from 60 +/- 14 to 258 +/- 75 mg/min, p less than 0.05), breakdown of the blood-aqueous barrier and rise in the IOP, accompanied with systemic hypotension. Miosis was not observed after CGRP. In the present study, the vasodilatory action of CGRP on the rabbit eye has been shown. This makes our understanding of the mechanism of the ocular irritative response after sensory nerve stimulation more complete. Thus, CGRP through vasodilation disrupts the blood-aqueous barrier and raises the IOP. The more intense increase in the IOP after sensory nerve stimulation than after CGRP is probably caused by a CGRP-induced vasodilation and breakdown of the blood-aqueous barrier, enhanced by a miosis-induced pupillary block.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.