Abstract

Abstract Neodymium (Nd) doped intergrowth bismuth layer-structured ferroelectric compounds Bi 7− x Nd x Ti 4 NbO 21 ( x = 0, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0) were synthesized through a solid-state method. The influence of the Nd 3+ substitution of Bi 3+ on the lattice, microstructure and electrical properties of these compounds were investigated. The X-ray diffraction and Raman scattering analyses demonstrate that a phase transition from orthorhombic to pseudo-tetragonal occurs in these compounds, relying on substitution proportions and sites of Nd 3+ for Bi 3+ . With the increasing Nd 3+ dopants, the growth of plate-like grains along the a – b plane and a secondary intergranular metallic Bi phase were retarded which resulted in the increases of sintering temperature, density and electrical resistance of the doped ceramics. The resultant ceramic with x = 1.25 possesses a piezoelectric coefficient d 33 up to 16.3 pC/N with a Curie temperature T C above 750 °C were obtained for the compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.