Abstract

A set of GaN films were overgrown by hydride vapor phase epitaxy (HVPE) on nanoporous GaN templates with different pore diameters. These samples have various properties as seen from the measurements of X-ray diffraction (XRD) and photoluminescence (PL). Cross-sectional observations under a scanning electron microscopy (SEM) reveal that the overgrowth mechanism and process are strongly related to the dimension of nanopores, indicating that an optimum diameter exists for the properties of subsequent HVPE–GaN layers. When the diameters of nanopores are less than the optimum value, the pores on top of GaN templates can be left, and the properties of HVPE–GaN films show significant improvement. In contrast, the pores are almost stuffed with HVPE–GaN films, which obviously limit the improvement degree of HVPE–GaN films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.