Abstract

The deamidation kinetics of 7 model peptides (VYPNGA, VYGNGA, VFGNGA, VIGNGA, VGGNGA, VGPNGA, and VGYNGA) were studied at 70 degrees C in pH 10 buffer solutions and at 70 degrees C and 50% relative humidity in lyophilized solid formulations containing polyvinyl pyrrolidone (PVP). The disappearance of the model peptides from solution and solid-state formulations followed apparent first-order kinetics, proceeding to completion in solution. In the solid state, the reactions showed plateaus with approximately 10% to 30% of the model peptides remaining; this was thought to be due to reversible complexation of the peptides and the PVP followed by slow dissociation of the complexes. The residues immediately N-terminal to asparagine (N-1, N-2) influenced the rate of deamidation significantly in the solid state but had minimal effect in solution. Increases in the volume and hydrophobicity of the N-1 and N-2 residues decreased the rate of deamidation in the solid state, but neither parameter alone adequately accounted for the observed effects. An empirical model using a linear combination of volume and hydrophobicity was developed; it showed that the influences of the volume and the hydrophobicity of the residues in the N-1 and N-2 positions are approximately equally important for the N-1 and N-2 residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.