Abstract

To investigate the effect of Mycobacterium tuberculosis ( Mtb) higBA on bacterial stress response and intracellular infection and immunity. The target gene amplified from Mtb H37Rv genome was cloned to the vector and then transferred to Mycobacterium smegmatis ( Ms) to construct a recombinant strain. Stress response experiment and Raw264.7 mouse macrophage infection was carried out with Ms_higBA, the recombinant strain, and Ms_ vec, the vector strain. Tests were conducted to measure bacterial colony forming unit (CFU) and transcriptional levels of cytokines, including interleukin ( IL)-1β, IL-6, IL-10, IL-12 p40, interferon ( IFN)- γ, tumor necrosis factor ( TNF)- α, and inducible nitric oxide synthase ( iNOS). The recombinant strain, Ms_higBA, was constructed successfully. According to the findings of the stress response experiment, higBA could indeed enhance bacterial survival under certain conditions of in vitro culture. Intracellular infection experiment demonstrated that higBA enhanced bacterial survival in macrophages and influenced the transcriptional level of cytokines. The higBA genes from Mtb play a role in bacterial stress response and intracellular infection and immunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.