Abstract

Metastasis-associated protein 3 (MTA3) can serve as a tumor suppressor in many cancer types. However, the role of MTA3 in radiosensitivity of patients with esophageal squamous cell cancer (ESCC) remains unclear. We thus investigated the function of MTA3 in radiosensitivity for ESCC, one of the most common digestive cancers. The colony formation assay and nude mice xenograft tumor assay were performed to investigate the effect of MTA3 on radiosensitivity in ESCC. Glutamine consumption assay kit and glutamate production assay kit were used to assess the glutaminolysis. Glutaminase (GLS) Activity Assay Kit and Glutamine Synthetase (GS) Activity Assay Kit were used to analyze the activity of specific metabolic enzymes dominate glutaminolysis. The regulatory mechanism of glutaminolysis by MTA3 was confirmed using Chromatin immunoprecipitation assay and Gaussia luciferase assay. The expression levels of MTA3 and GS in ESCC primary tissues were evaluated using immunohistochemistry. Survival curves were plotted with the Kaplan-Meier method and compared by log-rank test. The colony formation assay showed that MTA3 depletion and overexpression caused significantly higher and lower clonogenic survival after different doses of irradiation (IR), respectively. When these cells were subcutaneously injected into nude mice, the tumors derived from the cells with MTA3 overexpression and MTA3 knockdown were significantly smaller and bigger after IR, respectively. These findings suggest that MTA3 can enhance radiosensitivity in vitro and in vivo. Meanwhile, overexpressed and knockdown MTA3 can repress and expedite glutamine consumption and glutamate production uniformly, respectively. To determine how MTA3 acts on glutaminolysis, the activity of two specific metabolic enzymes dominate this metabolism, GS and GLS, were evaluated. It found that overexpressed and knockdown MTA3 can restrain and enhance the activity of GS, respectively, but have less effect on GLS. Moreover, the decreased radiosensitivity mediated by MTA3 knockdown is significantly increased when treated with GS inhibitor, suggesting that GS plays a crucial role in MTA3-mediated radiosensitivity enhancement. Mechanistically, Chromatin immunoprecipitation assay and Gaussia luciferase assay showed that MTA3 was recruited to the promoter of GS and suppressed GS transcription. However, knockdown of GATA3 abolished MTA3's repressive effect on GS and inhibited the MTA3's occupation on the promoter region of GS. These results collectively demonstrated that, in ESCC cells, MTA3 is recruited by GATA3 to inhibit GS expression, then ultimately represses glutaminolysis and enhances radiosensitivity. Finally, we showed that the ESCC patients in the MTA3low/GShigh group is significantly associated with shorter overall survival. MTA3 is capable of enhancing radiosensitivity through downregulating GS and MTA3low/GShigh might be a potential prognostic factor for ESCC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.