Abstract

Nickel nanoparticles were synthesized by the reduction of nickel chloride with hydrazine hydrate in a polyol medium in the presence of sodium polyacrylates (Na-PA) having molecular weights (Mw) of 1200, 5100 and 8000. The size and morphology of the resulting nickel nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy. Polymers having lower Mw values were found to be more efficient in reducing the nickel particle size. A decrease in the polymer concentrations yielded the smaller particles. Magnetic measurements showed that the as-prepared powders are ferromagnetic and their saturation magnetization and coercivity are size-dependent. Compared with bulk nickel, the nanoparticles exhibit an enhanced coercivity which is due to their small size and a decreased saturation magnetization resulted from the surface oxidation of the powder. The synthesis procedure offers a simple approach to preparing nickel nanopowders on a large scale which could be used as magnetic recording materials, including high-density memory storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.