Abstract

Large-scale molecular dynamics simulations consisting of more than 88,000–106,000 atoms for approximately 250 ns (including equilibration and production) were conducted to assess the effect of polar, nonpolar and amphiphilic molecular solvents on the nanoscale structuring of 1-[Formula: see text]-dodecyl-3-methylimidazolium [C[Formula: see text]mim] octylsulfate [C8SO4] ionic liquid (IL). Water [H2O], [Formula: see text]-octane [C8H[Formula: see text]] and 1-octanol [C8H[Formula: see text]OH] are employed as examples of polar, nonpolar, and amphiphilic molecules, respectively. The results indicate that each of these molecular solvents modify the nanosegregation behavior of the ionic liquid in a unique way. Water induces a high order of structuring of the ionic liquid as indicated by extremely high nematic order parameter for the system. In addition, the morphology of the neat ionic liquid is transformed from layer-like to that of bilayer-like in which the polar and nonpolar domains alternate. The presence of water also causes the stretching of the nonpolar domain, thus, increasing its size. At the concentration examined in this work, [Formula: see text]-octane is found to be only partially miscible with the ionic liquid. The polar network is maintained; however, the continuous cationic nonpolar domain is split into multiple domains. [Formula: see text]-octane is accommodated in the ionic liquid nonpolar domain. Similarly, the amphiphilicity of 1-octanol leads to an increase in the number of cationic as well as anionic domains. The overall nonpolar domain length, however, remains nearly identical to that found for the pure ionic liquid. Additional characterization of structural features of the three systems is discussed in terms of one-dimensional number densities, nematic order parameters for the overall systems and their components and structure factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.