Abstract

With the increasing use of drugs in cities, the sewer is becoming the most suitable place for antibiotic accumulation and transfer. In order to reveal the occurrence and fate of antibiotic sewage during pipeline migration, we used an anaerobic reactor device to simulate the concentration change of minocycline in the sewer and its impact on the sewage quality. The results showed that 90.8 % of minocycline was removed during sewer transportation. In the presence of minocycline, although the consumption of Chemical Oxygen Demand and total nitrogen in the sewage did not change significantly, the consumption rate of total phosphorus, nitrate nitrogen and the growth rate of ammonia nitrogen at the front end of the pipeline were decreased from 29.4 %, 86.3 %, 60.3 % to 3.7 %, 81.5 %, 18.3 % respectively. Minocycline inhibited the reduction of SO42−, while also reducing the production of H2S gas and increasing the release of CH4 gas. Moreover, the decline in the abundance of functional bacteria such as phosphorus accumulating organisms was consistent with the consumption of sewage nutrients. This experiment provides data support for the risk of wastewater leakage of medical and pharmaceutical wastewater into domestic sewage, and will helps to maintain the safe operation of actual sewage pipes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.