Abstract

Ferrite magnetic nanoparticles (MNPs) with spinel structure are of great significance in the study of magnetic induction hyperthermia (MIH). The effect of element doping on the magnetic properties of MNPs is crucial. Here, we report the influence of the Mg2+ substitution on Curie temperature (Tc), magnetic properties, and heating efficiency of MgxZn0.8-xCo0.2Fe2O4 (0.1 ≤ x ≤ 0.5) nanoparticles synthesized by hydrothermal method. With the increase of Mg2+ content, Tc increases from 36.7 °C to 242.9 °C due to the enhancement of the A-B super-exchange interaction. The specific saturation magnetization increases from 35.5 emu·g−1 to 53.3 emu·g−1 and then remains constant, which is caused by the effect of Yafet-Kittle angle and magnetic moment. The specific absorption rate (SAR) increases from 3.5 W·g−1to 82.7 W·g−1, which may be ascribed to the effect of size and specific saturation magnetization of the nanoparticles. When x = 0.3, the stable temperature under the alternating magnetic field (32 kA·m−1, 100 kHz) reaches 44.7 °C with the SAR of 49.0 W·g−1. The low toxicity to cells and high heating efficiency endow the MNPs the potential in MIH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.