Abstract

F-actin plays a crucial role in fundamental cellular processes, and is extremely susceptible to peroxynitrite attack due to the high abundance of tyrosine in the peptide. Methionine sulfoxide reductase (Msr) B1 is a selenium-dependent enzyme (selenoprotein R) that may act as a reactive oxygen species (ROS) scavenger. However, its function in coping with reactive nitrogen species (RNS)-mediated stress and the physiological significance remain unclear. Thus, the present study was conducted to elucidate the role and mechanism of MsrB1 in protecting human lens epithelial (hLE) cells against peroxynitrite-induced F-actin disruption. While exposure to high concentrations of peroxynitrite and gene silencing of MsrB1 by siRNA alone caused disassembly of F-actin via inactivation of extracellular signal-regulated kinase (ERK) in hLE cells, the latter substantially aggravated the disassembly of F-actin triggered by the former. This aggravation concurred with elevated nitration of F-actin and inactivation of ERK compared with that induced by the peroxynitrite treatment alone. In conclusion, MsrB1 protected hLE cells against the peroxynitrite-induced F-actin disruption, and the protection was mediated by inhibiting the resultant nitration of F-actin and inactivation of ERKs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.