Abstract

Abstract Drill core samples of garnet-clinopyroxene granulite at Tirschheim and a reference sample at Waldheim (Saxon Granulite Massif, Germany) endured the same P-T conditions, but developed variable mineral assemblages due to differences in bulk chemistry, reaction progress, deformation and retrogression. Titanite formed during peak-metamorphic conditions of 22–24 kbar and 1020–1050 °C. Dating titanite from the various samples should yield the same age for all. The observed age variation, which exceeds the duration of the entire metamorphic cycle, originates from the contrasting preservation of isotopic inheritance during peak metamorphism and from post-peak re-equilibration. (1) Pb inheritance observed in some peak-metamorphic titanite demonstrates that geochronologically relevant elements are redistributed among remaining reactants and reaction products during prograde metamorphism and that the sequence of metamorphic reactions does not result in isotopic homogenization. Instead, metamorphic minerals inherit the radiogenic signatures of the precursor minerals and may in extreme cases approach the age of the precursor mineral. (2) Titanite that formed at peak-metamorphic conditions is characterized by high A1 contents and X F ≈ 0.8−1. Texturally comparable titanite that re-equilibrated during cooling (reduced Al contents and X F ) yields too young U-Pb ages. The age of such re-equilibrated titanite does not correspond to the age of the event indicated by the texture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.