Abstract
Recent experimental investigations suggest that interaction of colloidal particles with polymeric membrane surfaces is influenced by membrane surface morphology (roughness). To better understand the consequences of surface roughness on colloid deposition and fouling, it is imperative that models for predicting the Derjaguin−Landau−Verwey−Overbeek (DLVO) interaction energy between colloidal particles and rough membrane surfaces be developed. We present a technique of reconstructing the mathematical topology of polymeric membrane surfaces using statistical parameters derived from atomic force microscopy roughness analyses. The surface element integration technique is used to calculate the DLVO interactions between spherical colloidal particles and the simulated (reconstructed) membrane surfaces. Predictions show that the repulsive interaction energy barrier between a colloidal particle and a rough membrane is lower than the corresponding barrier for a smooth membrane. The reduction in the energy barrier is ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.