Abstract

Combined application of manures and fertilizers played a pivotal role in the improvement in soil physico-chemical properties, macro and micronutrients distribution and their transformations under different cropping systems. Based on a cropping system, the different levels of manures and fertilizers were used to study improvement in physico-chemical properties of soil. The aim was to explore the appropriate application of organic manures and inorganic fertilizers for improved sustainable yields of a cropping system. Intensive cropping systems lead to N, P, K, Zn, Cu, Fe, and Mn deficiencies in surface and subsurface soil, which could be refreshed with combined application of manures and fertilizers. The application of manures and fertilizers controls the pH and electrical conductivity of soil. Moreover, manures and fertilizers showed improvement is soil physical conditions viz. bulk density, particle density, porosity, and water holding capacity etc. Manuring coupled with fertilization helped to great extent for macro and micronutrient transformations in the soil. Under these transformations, the soil solution and water soluble component (fractions/pools) of soil is enriched with macro and micronutrients. There was a consistent declining trend of DTPA-extractable Zn, Cu, Fe, and Mn in the sub-surface soil in comparison to the surface layer, which may be ascribed to increase in pH with increase in depth and decrease of organic matter with depth. Similarly, manures reduced the concentration of residual macro and micronutrients in soil. Recently, integrated nutrient management system (INMS) is gaining importance vis-a-vis maintaining the soil fertility with conjunctive use of chemical fertilizers plus organic manures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.