Abstract

Shredding and melting characteristics are vital to the function of low-moisture Mozzarella cheeses that are used as ingredients for pizza and related foods. Newly manufactured Mozzarella melts to a tough, extremely elastic, and somewhat granular consistency with limited stretch that is unacceptable for pizza. However, during the first few weeks of refrigerated storage, a dramatic transformation occurs as the unmelted cheese becomes softer and the melted cheese becomes more viscous, less elastic, and highly stretchable. Thus, the cheese attains optimal functionality for pizza. Over longer periods, Mozzarella becomes excessively soft and fluid when melted and is no longer acceptable for pizza. Low-moisture Mozzarella is correctly viewed as a cheese that requires aging. The functional characteristics of low-moisture Mozzarella are due initially to the chemical composition, including fat, moisture, NaCl, and mineral contents, and the structure of the paracasein curd matrix that is established during manufacture. Changes in functional characteristics during aging are directly related to proteolysis rate and possibly proteolytic specificity. Proteolysis during aging is influenced by manufacturing factors such as starter culture, coagulant, and stretching temperature, and possibly to indigenous proteases in the cheesemilk such as plasmin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.