Abstract
Electrodeposition of cobalt on monolayer graphene synthesized by chemical vapor deposition produces Co–CoO/graphene composite structures, which is accompanied by increases in the electrical resistance and magnetoresistance. We show that the observed magnetoresistance effect is caused by two competing contributions: negative (NMR) and positive (PMR) magnetoresistance. In weak magnetic fields, the NMR is described by quantum localization correction to the Drude model of conductivity in graphene. The enhancement of PMR observed in strong magnetic fields is related to the Lorentz mechanism in Co–CoO particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.