Abstract
SiC ceramics is very promising to be widely applied due to the excellent physical and chemical properties.However, the very difficult process of SiC ceramics hinders its application. In this paper, the nano-cutting of SiC ceramics is simulated based on molecular dynamics. The influences of the tool rake and cutting depth on the cutting force, the kinetic energy and potential are analyzed. The results show that the cutting force, system kinetic energy and potential energy increase firstly,reach the maximum, and then decrease in the process; with the increase of the tool rake, the cutting force and the kinetic energy decrease; with the increase of the cutting depth, the cutting force increases, and the kinetic energy and the potential energy decreases. These results are very helpful to understanding the process mechanism of SiC ceramics and increasing its process efficiency
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.