Abstract

The effect of cooling rate after solution heat treatment and its combination with 1% pre-deformation on precipitation hardening in two Al-Mg-Si alloys is investigated by transmission electron microscopy (TEM), and related to material hardness. Two alloys have been used, one Cu-free and the other with low Cu additions (~0.1 wt%), both having the same amounts of other solutes. A double peak hardness evolution during an isothermal heat treatment was observed with slow cooling after solution heat treatment. This effect was less pronounced in the Cu-added alloy. The 1% pre-deformation also made this effect less pronounced, but it led to faster initial hardness evolution and delayed over-aging. Maximum hardness was not influenced by cooling rate and the pre-deformation. Hardness was directly related to precipitate number densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.