Abstract

In recycling of lithium-ion batteries, lithium is a challenging element, which possesses great threat to the environment. The disposal of electronic waste is a major problem, which our country is currently facing, whereas, the lithium is one of the compound in electronic waste which challenges the recycling of lithium-ion batteries. If lithium is properly extracted, it can be used for structural engineering purpose. Lithium, if used in concrete, it controls the cracks due to alkali silica reaction (ASR), resulting in increased strength and durability of the concrete. Lithium based admixtures are effective in suppression of alkali silica reaction and delayed ettringite formation, if the dosage added in concrete is appropriate. The main objective of this paper is to assess the effectiveness of LiNO3 at various dosage levels in concrete. In this paper, the effect of LiNO3 on the mechanical properties of concrete, ASR gel formation and the flexural behavior of reinforced concrete rectangular beams are studied. The mechanical properties of concrete was investigated for six mix proportions comprising of control mix, lithium nitrate at 0.6M, 0.65M, 0.7M, 0.75M, 0.8M. LiNO3 not only prevents the ASR gel formation, but also it has great influence on mechanical properties of concrete. The results indicate that the concrete with 0.75M LiNO3 has higher strength values. SEM analysis has been performed for 0.75M and control mix to study the micro characteristics of concrete. The ASR gel formed in 0.75M has been suppressed as compared to that of concrete without lithium nitrate as an admixture. The durability studies are performed in concrete for water permeability, water absorption and rapid chloride penetration characteristics. The analytical study of flexural behavior of reinforced concrete rectangular beam is done using the software ANSYS 16.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.