Abstract

Phototrophic biofilms seem to be suitable candidates for tertiary wastewater treatment due to their high uptake capacity for nutrients and other pollutants, also taking into account the time and cost savings derived from easy procedures for biomass harvesting. Biomass accrual, structure, and physiology of biofilms affect the efficiency of nutrient removal by its microbial community. Here, we construct a biofilm consisting of a cyanobacterium Synechocystis sp. and the green alga Chlorococcum sp. and determine the effect of combined variations of irradiance and temperature on the biofilm structure and function. The two species were isolated from phototrophic biofilms naturally developing in an Italian wastewater treatment plant and grown in a microcosm designed for biofilm investigations. Phototrophic biomass accumulation, percent species composition, photosynthetic response and the amount and composition of capsular polysaccharides (CPS), including anionic residues, are reported. The results showed that biofilm development required relatively moderate irradiances (60 μmol photons m−2 s−1) below which development was arrested. Both light and temperature had a strong effect on the composition of each species to the biofilm. The CPS compositions also changed with temperature, light and species composition. The CPS of the green-algal-dominated biofilm had the higher uronic acid content indicating a potential to exploit green algae in the treatment of waste contaminated with heavy metals. Given the knowledge of the response of certain species to light and temperature combinations, it may be possible to construct biofilms of known species and CPS composition to use them for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.