Abstract

The possible involvement of the ascending 5-hydroxytryptaminergic (5HTergic) pathways in determining the effectiveness of delayed positive reinforcers was investigated using Mazur's (1984) adjusting-delay paradigm. Fourteen rats received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei; 12 rats received sham lesions. The rats made repeated choices in a two-lever operant conditioning chamber between a smaller reinforcer delivered after a 2-s delay and a larger reinforcer delivered after a variable delay, the length of which was determined by the subject's previous choices. When the two reinforcers consisted of one and two food pellets, the "indifference point" (the delay to the larger reinforcer that rendered the two reinforcers equally effective) was shorter in the lesioned group than in the control group. Increasing the sizes of the reinforcers to three and six pellets reduced the indifference point in both groups and abolished the between-group difference. The levels of 5HT and 5-hydroxyindoleacetic acid (5HIAA) in the parietal cortex, hippocampus, amygdala, nucleus accumbens and hypothalamus were greatly reduced in the lesioned group, but the levels of noradrenaline and dopamine were not significantly affected. The results are consistent with the suggestion that the 5HTergic pathways play a role in maintaining the effectiveness of delayed reinforcers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.