Abstract

Composites use in the aerospace industry is expanding, in particular carbon fibre reinforced plastics (CFRP) for structural components. Machinability can however be problematic especially when drilling, due to CFRP's inherent anisotropy/in-homogeneity, limited plastic deformation and abrasive characteristics. Following a brief review on composites development and associated machining, the paper outlines experimental results when twist drilling 1.5 mm diameter holes in 3 mm thick CFRP laminate using tungsten carbide (WC) stepped drills. The control variables considered were prepreg type (3 types) and form (unidirectional (UD) and woven), together with drill feed rate (0.2 and 0.4 mm/rev). A full factorial experimental design was used involving 12 tests. Response variables included the number of drilled holes (wear criterion VB Bmax ≤ 100 μm), thrust force and torque, together with entry and exit delamination (conventional and adjusted delamination factor values calculated) and hole diameter. Best results were obtained with woven MTM44-1/HTS oven cured material (3750 holes) while the effect of prepreg form on tool life was evident only when operating at the higher level of feed rate. Thrust forces were typically under 125 N with torque values generally below 65 Nmm over the range of operating parameters employed. Finally, the delamination factor ( F d ) measured at hole entry and exit ranged between ∼1.2–1.8 and 1.0–2.1 respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.