Abstract

The effect of La on inclusions and fracture toughness of 40CrNi2Si2MoVA steel was investigated via the optical microscope, scanning electron microscope, image software and electronic universal testing machine. The results reveal that the inclusions in steel without La are mainly MnS and Al2O3–MnS, while the inclusions in steels with La primarily contain La–O–S, La–S and other rare earth complex inclusions contain P and As. La–O–S and La–S are formed under the steelmaking temperature and act as the nucleation core of rare earth complex inclusions containing P and As. According to the segregation model, La–O–S–P–As and La–S–P–As are formed through chemical reactions during the solidification stage. As La content in steels increases from 0 to 0.032 mass%, the average spacing of inclusions is gradually increased from 5.28 to 15.91 μm. The volume fraction of inclusions in steels containing less than 0.018 mass% La approaches 0.006%; however, it is significantly improved to 0.058% when La content is increased to 0.032 mass%. With the increase in La content, the fracture toughness is firstly improved from 63.1 to 80.0 MPa m1/2 due to the increase in average spacing of inclusions and then decreases to 69.6 MPa m1/2 owing to the excessive increase in volume fraction of inclusions. The optimal fracture toughness is found in 40CrNi2Si2MoVA steel with 0.018 mass% La.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.