Abstract

Relevance. A beam-column joint is a crucial zone in any frame structure that transmits the forces at the end of the members in the panel zone. The connection between the joints may be assumed as rigid or flexible one and it is not an ideal one to predict the actual behavior of the joint section. Methods. The displacement along the joint section is the most critical one that has to be taken care while designing the structure. In this paper, the flexibility of the reinforced concrete joints was studied under two different cases: in first phase, building having 3 storey including ground floor was taken and is analysed using SAP 2000 and secondly third floor shear wall with l hollow concrete mesh of column section was analyzed in same software and the flexibility of the joints was tested in terms of its stress and displacement parameters using different approaches such as link mass property, end length offset zone, panel zone rotational spring stiffness property. The results obtained from the two cases were analyzed with consideration of parametric study and variation of the stresses with displacement and are shown with comparative graphic.

Highlights

  • The flexibility of the reinforced concrete joints was studied under two different cases: in first phase, building having 3 storey including ground floor was taken and is analysed using SAP 2000 and secondly third floor shear wall with l hollow concrete mesh of column section was analyzed in same software and the flexibility of the joints was tested in terms of its stress and displacement parameters using different approaches such as link mass property, end length offset zone, panel zone rotational spring stiffness property

  • SAP 2000 allows the use of specified link mass property in a panel zone area where mass and stiffness can be given to it, and it is different type such as linear, multi-linear elastic, plastic, damper etc. and according to the specified property we can change the degree of freedom of the system in it

  • Looking at the table and graph there is the corresponding decrease in displacement with the increase in rigidity factor along X and Y axis as with the increase in rigidity factor the connection of the joints along beam column junction changes from center to end which makes it rigid

Read more

Summary

Modeling approach

To test the flexibility of the joint section SAP 2000 v20.2 is used applying two different frame structures to idealize it differently. Different types of linear centerline model (suitable for steel moment resisting frame), elastic model with panel zone (beams and columns reconnected via rigid links in a panel zone, and the crossroad hinge is connected via a spring with the stiffness of the panel zone), nonlinear model with panel zone This model shows the least difference between the actual behavior of a structure and the behavior of the analytical model.).

End length offsets
Doubler plate thickness
Specified spring stiffness
Link mass property
Geometry of the structure
Results and discussions
Conclusions
Case 2
Results and discussions of shear wall system
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.