Abstract

Solid solutions of In2−xScxW3O12 (0≤x≤2) were successfully synthesized using the solid state reaction method. Effects of substituted scandium content on the phase composition, microstructure, phase transition temperatures and thermal expansion behaviors of the resulting In2−xScxW3O12 (0≤x≤2) samples were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermal mechanical analyzer (TMA). Results indicate that the obtained In2W3O12 ceramic undergoes a structure phase transition from monoclinic to orthorhombic at 248°C. This phase transition temperature of In2W3O12 can be easily shifted to a lower temperature by partly substituting the In3+ with Sc3+. When the x value increased from 0 to 1, the phase transition temperatures of In2−xScxW3O12 (0≤x≤2) samples decreased from 248 to 47°C. All the In2−xScxW3O12 (0≤x≤2) ceramics show fine negative thermal expansion below their corresponding phase transition temperatures. The negative thermal expansion coefficients of the In2−xScxW3O12 (0≤x≤2) ceramics change in the range from −1.08×10−6°C−1 to −7.13×10−6°C−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.