Abstract

This paper introduces the design concept of a dual-functional molecular dyad tailored specifically for solution-processable organic light-emitting diodes (OLEDs). Cy-tmCPBN, characterized by an asymmetric molecular dyad structure, integrates a host unit (tmCP) and a multiple-resonance (MR) emitter (CzBN) via a non-conjugated cyclohexane linker. Cy-tmCPBN exhibited efficient intramolecular energy transfers (EnTs) from tmCP to the CzBN unit, as confirmed by time-resolved fluorescence experiments. The fluorescence lifetime of the tmCP unit was approximately three times shorter in a highly diluted solution of Cy-tmCPBN than in a mixed solution of Cy-tmCP and Cy-CzBN. In addition, Cy-tmCPBN exhibited excellent solubility and film-forming ability, making it suitable for solution processing. Notably, OLEDs utilizing Cy-tmCPBN achieved over twice the brightness and improved external quantum efficiency of 12.3% compared to OLEDs using Cy-CzBN with the same concentration of CzBN in the emitting layer. The improved OLED performance can be explained by the increased EnT efficiency from Cy-tmCP to Cy-tmCPBN and the intramolecular EnT within Cy-tmCPBN. In our dual-functional dyad, incorporating both host and emitter units in an asymmetric molecular dyad structure, we induced a positive synergy effect with the host moiety, enhancing OLED performance through intramolecular EnT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.